Eulerian Numbers #
This module formalizes the definition of Eulerian numbers (Section 6.2 from Concrete Mathematics).
The Eulerian number $\left\langle{n\atop k}\right\rangle$ counts the number of permutations of $\{1,2,\ldots,n\}$ with $k$ ascents.
References #
theorem
succ_mul_choose_eq
{R : Type u_1}
[NonAssocRing R]
[Pow R ℕ]
[BinomialRing R]
[NatPowAssoc R]
(r : R)
(n : ℕ)
:
(n + 1) • Ring.choose (r + 1) (n + 1) = (r + 1) * Ring.choose r n