Documentation

SpecialNumbers.Eulerian

Eulerian Numbers #

This module formalizes the definition of Eulerian numbers (Section 6.2 from Concrete Mathematics).

The Eulerian number $\left\langle{n\atop k}\right\rangle$ counts the number of permutations of $\{1,2,\ldots,n\}$ with $k$ ascents.

References #

def eulerian (n k : ) :
Equations
Instances For
    theorem eulerian_of_n_zero (n : ) :
    eulerian n 0 = 1
    theorem eulerian_of_zero_k (k : ) (h : k > 0) :
    eulerian 0 k = 0
    theorem eulerian_of_n_succ_n (n k : ) (h : n > 0) (hp : k n) :
    eulerian n k = 0
    theorem eulerian_of_succ_n_n (n : ) :
    eulerian (n + 1) n = 1
    theorem smul_mul_eq {S : Type u_1} [NonAssocRing S] (r s : S) (a : ) :
    a r * s = r * a s
    theorem succ_mul_choose_eq {R : Type u_1} [NonAssocRing R] [Pow R ] [BinomialRing R] [NatPowAssoc R] (r : R) (n : ) :
    (n + 1) Ring.choose (r + 1) (n + 1) = (r + 1) * Ring.choose r n