Documentation

SpecialNumbers.Euclidian

Euclid Numbers #

This file introduces the Euclid numbers as defined in [GKP89]. This is sequence A129871 in [OEISFI25]

Implementation notes #

The reference [GKP89] names the sequence $(e_n)_{n\ge 1}$ as Euclid numbers, while [OEISFI25] names it $(e_n)_{n\ge 0}$ as Sylvester's sequence. We chose to follow the notation from [GKP89].

Main results #

References #

The sequence of Euclid numbers $(e_n)_{n\ge 0}$.

Definition by a simple recurrence. The more explicit recurrence is proved in Theorem euclid_prod_finset_add_one.

Equations
Instances For

    The Euclid numbers satisfy the recurrence: $$ e_{n+1} = \prod_{i=1}^n e_i + 1. $$

    theorem Euclid.euclid_prod_finset_add_one_of_pos {n : } (h : n 1) :
    Euclid.euclid n = xFinset.Icc 1 (n - 1), Euclid.euclid x + 1

    Another expression of euclid_prod_finset_add_one for easier application when $n\ge 1$: $$ e_n = \prod_{i=1}^{n-1} e_i + 1. $$

    Euclid numbers are positive.

    Euclid numbers are $\ge 1$.

    theorem Euclid.euclid_gt_one_of_pos {n : } (h : n 1) :

    Only $e_0 = 1$.

    theorem Euclid.euclid_mod_eq_one {m n : } (h1 : m < n) (h2 : 0 < m) :

    $e_n \equiv 1\ (\mathrm{mod}~e_m)$, when $0 < m < n$.

    theorem Euclid.euclid_coprime {m n : } (h : m n) :

    The Euclid numbers are co-prime: $\gcd(e_n, e_m) = 1$, for $n\neq m$.

    The Euclid numbers are strictly increasing: $e_n < e_{n+1}$, for all $n\in\mathbb{N}$.

    noncomputable def Euclid.euclidConstant :

    The sequence $$ \frac{1}{2^n}\log\left(e_n - \frac{1}{2}\right) $$ converges to $\log E$, where $E$ is the contant in the explicit formula for the Euclid numbers euclid_eq_floor_constant_pow.

    Equations
    Instances For

      $e_n \le E^{2^n} + \frac{1}{2}$ for all $n\in\mathbb{N}$.

      $E^{2^n} + \frac{1}{2} < e_n + 1$ for all $n\in\mathbb{N}$.

      $e_n = \lfloor E^{2^n} + \frac{1}{2}\rfloor$ for all $n\in\mathbb{N}$.