Euclid Numbers #
This file introduces the Euclid numbers as defined in [GKP89]. This is sequence A129871 in [OEISFI25]
Implementation notes #
The reference [GKP89] names the sequence $(e_n)_{n\ge 1}$ as Euclid numbers, while [OEISFI25] names it $(e_n)_{n\ge 0}$ as Sylvester's sequence. We chose to follow the notation from [GKP89].
Main results #
- Recurrence with a product of Euclid numbers.
- Co-primality of Euclid numbers.
- Explicit formula.
References #
The sequence of Euclid numbers $(e_n)_{n\ge 0}$.
Definition by a simple recurrence. The more explicit recurrence is proved in
Theorem euclid_prod_finset_add_one
.
Equations
- Euclid.euclid 0 = 1
- Euclid.euclid 1 = 2
- Euclid.euclid n.succ = Euclid.euclid n ^ 2 - Euclid.euclid n + 1
Instances For
The Euclid numbers satisfy the recurrence: $$ e_{n+1} = \prod_{i=1}^n e_i + 1. $$
Another expression of euclid_prod_finset_add_one
for easier application when $n\ge 1$:
$$ e_n = \prod_{i=1}^{n-1} e_i + 1. $$
$e_n \equiv 1\ (\mathrm{mod}~e_m)$, when $0 < m < n$.
The Euclid numbers are co-prime: $\gcd(e_n, e_m) = 1$, for $n\neq m$.
The Euclid numbers are strictly increasing: $e_n < e_{n+1}$, for all $n\in\mathbb{N}$.
The sequence
$$ \frac{1}{2^n}\log\left(e_n - \frac{1}{2}\right) $$
converges to $\log E$, where $E$ is the contant in the
explicit formula for the Euclid numbers euclid_eq_floor_constant_pow
.
Instances For
$e_n \le E^{2^n} + \frac{1}{2}$ for all $n\in\mathbb{N}$.
$E^{2^n} + \frac{1}{2} < e_n + 1$ for all $n\in\mathbb{N}$.
$e_n = \lfloor E^{2^n} + \frac{1}{2}\rfloor$ for all $n\in\mathbb{N}$.